skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zanolin, Michele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We develop and characterize a parameter estimation methodology for rotating core collapse supernovae based on the gravitational wave core bounce phase and real detector noise. Expanding on the evidence from numerical simulations for the deterministic nature of this gravitational wave emission and about the dependence on the ratio $$\beta$$ between rotational kinetic to potential energy, we propose an analytical model for the core bounce component which depends on $$\beta$$ and one phenomenological parameter. We validate the goodness of the model with a pool of representative waveforms. We use the fitting factor adopted in compact coalescing binary searches as a metric to quantify the goodness of the analytical model and the template bank generated by the model presents an average accuracy of 94.4\% when compared with the numerical simulations and is used as the basis for the work. The error for a matched filter frequentist parameter estimation of $$\beta$$ is evaluated. The results obtained considering real interferometric noise and a waveform at a distance of 10 kpc and optimal orientation, for one standard deviation estimation error of the rotation parameter \(\beta\) lie in the range of \(10^{-2}\) to \(10^{-3}\) as \(\beta\) increases. The results are also compared to the scenario where Gaussian recolored data is employed. The analytical model also allows for the first time, to compute theoretical minima in the error for $$\beta$$ for any type of estimator. Our analysis indicates that the presence of rotation would be detectable at 0.5 Mpc for third generation interferometers like CE or ET. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. ABSTRACT Gamma-ray bursts (GRBs) are produced during the propagation of ultra-relativistic jets. It is challenging to study the jet close to the central source, due to the high opacity of the medium. In this paper, we present numerical simulations of relativistic jets propagating through a massive, stripped envelope star associated to long GRBs, breaking out of the star and accelerating into the circumstellar medium. We compute the gravitational wave (GW) signal resulting from the propagation of the jet through the star and the circumstellar medium. We show that key parameters of the jet propagation can be directly determined by the GW signal. The signal presents a first peak corresponding to the jet duration and a second peak which corresponds to the break-out time for an observer located close to the jet axis (which in turn depends on the stellar size), or to much larger times (corresponding to the end of the acceleration phase) for off-axis observers. We also show that the slope of the GW signal before and around the first peak tracks the jet luminosity history and the structure of the progenitor star. The amplitude of the GW signal is h+D ∼ hundreds to several thousands cm. Although this signal, for extragalactic sources, is outside the range of detectability of current GW detectors, it can be detected by future instruments as BBO, DECIGO, and ALIA. Our results illustrate that future detections of GW associated to GRB jets may represent a revolution in our understanding of this phenomenon. 
    more » « less
  4. We studied the detectability and reconstruction of gravitational waves from core-collapse supernova multidimensional models using simulated data from detectors predicted to operate in the late 2020s and early 2030s. We found that the detection range will improve by a factor of around two with respect to the second-generation gravitational-wave detectors, and the sky localization will significantly improve. We analyzed the reconstruction accuracy for the lower frequency and higher frequency portion of supernova signals with a 250 Hz cutoff. Since the waveform’s peak frequencies are usually at high frequencies, the gravitational-wave signals in this frequency band were reconstructed more accurately. 
    more » « less